Hierarchical Diffusion Motion Planning with Task-Conditioned Uncertainty-Aware Priors (2509.25685v1)
Abstract: We propose a novel hierarchical diffusion planner that embeds task and motion structure directly in the noise model. Unlike standard diffusion-based planners that use zero-mean, isotropic Gaussian noise, we employ a family of task-conditioned structured Gaussians whose means and covariances are derived from Gaussian Process Motion Planning (GPMP): sparse, task-centric key states or their associated timings (or both) are treated as noisy observations to produce a prior instance. We first generalize the standard diffusion process to biased, non-isotropic corruption with closed-form forward and posterior expressions. Building on this, our hierarchy separates prior instantiation from trajectory denoising: the upper level instantiates a task-conditioned structured Gaussian (mean and covariance), and the lower level denoises the full trajectory under that fixed prior. Experiments on Maze2D goal-reaching and KUKA block stacking show improved success rates, smoother trajectories, and stronger task alignment compared to isotropic baselines. Ablation studies indicate that explicitly structuring the corruption process offers benefits beyond simply conditioning the neural network. Overall, our method concentrates probability mass of prior near feasible, smooth, and semantically meaningful trajectories while maintaining tractability. Our project page is available at https://hta-diffusion.github.io.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.