Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LD-MoLE: Learnable Dynamic Routing for Mixture of LoRA Experts (2509.25684v1)

Published 30 Sep 2025 in cs.CL and cs.AI

Abstract: Recent studies have shown that combining parameter-efficient fine-tuning (PEFT) with mixture-of-experts (MoE) is an effective strategy for adapting LLMs to the downstream tasks. However, most existing approaches rely on conventional TopK routing, which requires careful hyperparameter tuning and assigns a fixed number of experts to each token. In this work, we propose LD-MoLE, a Learnable Dynamic routing mechanism for Mixture of LoRA Experts that enables adaptive, token-dependent, and layer-wise expert allocation. Our method replaces the non-differentiable TopK selection with a differentiable routing function and a closed-form solution. Moreover, our design allows the model to adaptively determine the number of experts to activate for each token at different layers. In addition, we introduce an analytical sparsity control objective to regularize the number of activated experts. Extensive experiments on the Qwen3-1.7B and Llama-3.2-3B models show that LD-MoLE achieves the highest average scores compared to state-of-the-art baselines, across a diverse set of benchmarks. Our method not only achieves superior performance, but also demonstrates the ability to learn token-dependent and layer-wise expert allocation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.