Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SING-SQL: A Synthetic Data Generation Framework for In-Domain Text-to-SQL Translation (2509.25672v1)

Published 30 Sep 2025 in cs.AI and cs.DB

Abstract: Translating natural language questions into SQL has become a core challenge in enabling non-technical users to query databases. While recent work has explored large-scale synthetic data generation to improve model performance through post-training, most efforts emphasize cross-domain generalization. This leaves a gap for real-world enterprise scenarios, where models need to specialize to a single database schema and organizations require to be able to evaluate their Text-to-SQL systems on their own databases. To address this, we introduce SING-SQL, a fully automated two-stage framework for generating high-quality, high-coverage synthetic Text-to-SQL data for any target database, without relying on SQL logs or manual annotations. Our approach hierarchically partitions a database schema into sub-schemas, synthesizes SQL queries across multiple complexity levels, and applies a quality-aware pipeline that includes LLM-as-a-judge validation, executability checks, automatic repair, and column balancing. We further release SingSQL-LM, a family of compact LLMs fine-tuned on the synthetic data, achieving strong in-domain generalization. On the subset of the BIRD benchmark, SingSQL-LM-3B-R64 reaches 82.87% Soft F1 and 73.03% EX upper bound with 32 candidates, outperforming the best 3B-scale baseline by +16.21 in Soft F1 and +12.36 in EX. At the 1.5B scale, SingSQL-LM-1.5B-R64 improves over prior systems by +9.30 in Soft F1 and +4.49 in EX. On synthetic evaluation sets, SingSQL-LMs exceed prior systems by wide margins, establishing state-of-the-art performance among open models at comparable scales. Our study of context management strategies reveals that schema-free fine-tuning combined with schema-only inference provides the most robust results. These findings establish SING-SQL as a scalable, database-agnostic paradigm for producing and evaluating enterprise-grade Text-to-SQL systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.