GroundSight: Augmenting Vision-Language Models with Grounding Information and De-hallucination (2509.25669v1)
Abstract: We propose a method to improve Visual Question Answering (VQA) with Retrieval-Augmented Generation (RAG) by introducing text-grounded object localization. Rather than retrieving information based on the entire image, our approach enables the model to generate a bounding box around the object most relevant to the question, allowing for targeted image cropping and focused retrieval. This reduces background noise, improves alignment between visual and textual cues, and helps mitigate hallucinations. Our RAG method enhances context-aware VQA responses increased the accuracy from 22.19% to 25.64%, with an absolute increase of 3.45 percentage points, compared to the baseline Llama-3.2-Vision-11B agent. We also proposed a de-hallucination method based on question type which can effectively reduce the hallucination rate from 65.79% to 13.88% and improves the truthfulness score.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.