Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Media Bias Detector: A Framework for Annotating and Analyzing the News at Scale (2509.25649v1)

Published 30 Sep 2025 in cs.CL

Abstract: Mainstream news organizations shape public perception not only directly through the articles they publish but also through the choices they make about which topics to cover (or ignore) and how to frame the issues they do decide to cover. However, measuring these subtle forms of media bias at scale remains a challenge. Here, we introduce a large, ongoing (from January 1, 2024 to present), near real-time dataset and computational framework developed to enable systematic study of selection and framing bias in news coverage. Our pipeline integrates LLMs with scalable, near-real-time news scraping to extract structured annotations -- including political lean, tone, topics, article type, and major events -- across hundreds of articles per day. We quantify these dimensions of coverage at multiple levels -- the sentence level, the article level, and the publisher level -- expanding the ways in which researchers can analyze media bias in the modern news landscape. In addition to a curated dataset, we also release an interactive web platform for convenient exploration of these data. Together, these contributions establish a reusable methodology for studying media bias at scale, providing empirical resources for future research. Leveraging the breadth of the corpus over time and across publishers, we also present some examples (focused on the 150,000+ articles examined in 2024) that illustrate how this novel data set can reveal insightful patterns in news coverage and bias, supporting academic research and real-world efforts to improve media accountability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.