Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Beyond Static Retrieval: Opportunities and Pitfalls of Iterative Retrieval in GraphRAG (2509.25530v1)

Published 29 Sep 2025 in cs.AI

Abstract: Retrieval-augmented generation (RAG) is a powerful paradigm for improving LLMs on knowledge-intensive question answering. Graph-based RAG (GraphRAG) leverages entity-relation graphs to support multi-hop reasoning, but most systems still rely on static retrieval. When crucial evidence, especially bridge documents that connect disjoint entities, is absent, reasoning collapses and hallucinations persist. Iterative retrieval, which performs multiple rounds of evidence selection, has emerged as a promising alternative, yet its role within GraphRAG remains poorly understood. We present the first systematic study of iterative retrieval in GraphRAG, analyzing how different strategies interact with graph-based backbones and under what conditions they succeed or fail. Our findings reveal clear opportunities: iteration improves complex multi-hop questions, helps promote bridge documents into leading ranks, and different strategies offer complementary strengths. At the same time, pitfalls remain: naive expansion often introduces noise that reduces precision, gains are limited on single-hop or simple comparison questions, and several bridge evidences still be buried too deep to be effectively used. Together, these results highlight a central bottleneck, namely that GraphRAG's effectiveness depends not only on recall but also on whether bridge evidence is consistently promoted into leading positions where it can support reasoning chains. To address this challenge, we propose Bridge-Guided Dual-Thought-based Retrieval (BDTR), a simple yet effective framework that generates complementary thoughts and leverages reasoning chains to recalibrate rankings and bring bridge evidence into leading positions. BDTR achieves consistent improvements across diverse GraphRAG settings and provides guidance for the design of future GraphRAG systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube