Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Can Molecular Foundation Models Know What They Don't Know? A Simple Remedy with Preference Optimization (2509.25509v1)

Published 29 Sep 2025 in cs.LG and q-bio.QM

Abstract: Molecular foundation models are rapidly advancing scientific discovery, but their unreliability on out-of-distribution (OOD) samples severely limits their application in high-stakes domains such as drug discovery and protein design. A critical failure mode is chemical hallucination, where models make high-confidence yet entirely incorrect predictions for unknown molecules. To address this challenge, we introduce Molecular Preference-Aligned Instance Ranking (Mole-PAIR), a simple, plug-and-play module that can be flexibly integrated with existing foundation models to improve their reliability on OOD data through cost-effective post-training. Specifically, our method formulates the OOD detection problem as a preference optimization over the estimated OOD affinity between in-distribution (ID) and OOD samples, achieving this goal through a pairwise learning objective. We show that this objective essentially optimizes AUROC, which measures how consistently ID and OOD samples are ranked by the model. Extensive experiments across five real-world molecular datasets demonstrate that our approach significantly improves the OOD detection capabilities of existing molecular foundation models, achieving up to 45.8%, 43.9%, and 24.3% improvements in AUROC under distribution shifts of size, scaffold, and assay, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube