Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Moment tensors of Dirichlet distributions and learning Latent Dirichlet Allocation (2509.25441v1)

Published 29 Sep 2025 in math.ST and stat.TH

Abstract: Understanding posterior contraction behavior in Bayesian hierarchical models is of fundamental importance, but progress in this question is relatively sparse in comparison to the theory of density estimation. In this paper, we study two classes of hierarchical models for grouped data, where observations within groups are exchangeable. Using moment tensor decomposition of the distribution of the latent variables, we establish a precise equivalence between the class of Admixture models (such as Latent Dirichlet Allocation) and the class of Mixture of products of multinomial distributions. This correspondence enables us to leverage the result from the latter class of models, which are more well-understood, so as to arrive at the identifiability and posterior contraction rates in both classes under conditions much weaker than in existing literature. For instance, our results shed light on cases where the topics are not linearly independent or the number of topics is misspecified in the admixture setting. Finally, we analyze individual documents' latent allocation performance via the borrowing of strength properties of hierarchical Bayesian modeling. Many illustrations and simulations are provided to support the theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.