Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scaling Behaviors of LLM Reinforcement Learning Post-Training: An Empirical Study in Mathematical Reasoning (2509.25300v1)

Published 29 Sep 2025 in cs.LG and cs.AI

Abstract: While scaling laws for LLMs during pre-training have been extensively studied, their behavior under reinforcement learning (RL) post-training remains largely unexplored. This paper presents a systematic empirical investigation of scaling behaviors in RL-based post-training, with a particular focus on mathematical reasoning. Based on 54 experiments across diverse model sizes and training settings, we characterize how model scale, data volume, and computational budget interact to shape performance. Our analysis leads to four key findings: (1). Under a fixed computational budget, larger models trained for fewer steps consistently outperform smaller models trained for more steps. (2). Given a fixed amount of training data, larger models achieve superior sample efficiency, yielding lower loss. (3). In data-constrained regimes, repeated reuse of high-quality data proves highly effective, as final performance is primarily governed by the total number of optimization steps rather than the uniqueness of samples. (4). These scaling behaviors are robust across both base and instruction-tuned models, which share similar learning dynamics (e.g., larger models show faster convergence) even while differing in absolute accuracy. Collectively, these results provide a principled foundation and practical guidelines for efficiently scaling the reasoning capabilities of LLMs through RL post-training.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 13 likes.