Papers
Topics
Authors
Recent
2000 character limit reached

AW-EL-PINNs: A Multi-Task Learning Physics-Informed Neural Network for Euler-Lagrange Systems in Optimal Control Problems (2509.25262v1)

Published 28 Sep 2025 in math.NA, cs.NA, cs.SY, and eess.SY

Abstract: This paper presents adaptive weighted Euler-Lagrange theorem combined physics-informed neural networks (AW-EL-PINNs) for solving Euler-Lagrange systems in optimal control problems. The framework systematically converts optimal control frameworks into two-point boundary value problems (TPBVPs) while establishing a multi-task learning paradigm through innovative integration of the Euler-Lagrange theorem with deep learning architecture. An adaptive loss weighting mechanism dynamically balances loss function components during training, decreasing tedious manual tuning of weighting the loss functions compared to the conventional physics-informed neural networks (PINNs). Based on six numerical examples, it's clear that AW-EL-PINNs achieve enhanced solution accuracy compared to baseline methods while maintaining stability throughout the optimization process. These results highlight the framework's capability to improve precision and ensure stability in solving Euler-Lagrange systems in optimal control problems, offering potential strategies for problems under physical applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.