Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

RANGER -- Repository-Level Agent for Graph-Enhanced Retrieval (2509.25257v1)

Published 27 Sep 2025 in cs.SE, cs.IR, and cs.LG

Abstract: General-purpose automated software engineering (ASE) includes tasks such as code completion, retrieval, repair, QA, and summarization. These tasks require a code retrieval system that can handle specific queries about code entities, or code entity queries (for example, locating a specific class or retrieving the dependencies of a function), as well as general queries without explicit code entities, or natural language queries (for example, describing a task and retrieving the corresponding code). We present RANGER, a repository-level code retrieval agent designed to address both query types, filling a gap in recent works that have focused primarily on code-entity queries. We first present a tool that constructs a comprehensive knowledge graph of the entire repository, capturing hierarchical and cross-file dependencies down to the variable level, and augments graph nodes with textual descriptions and embeddings to bridge the gap between code and natural language. RANGER then operates on this graph through a dual-stage retrieval pipeline. Entity-based queries are answered through fast Cypher lookups, while natural language queries are handled by MCTS-guided graph exploration. We evaluate RANGER across four diverse benchmarks that represent core ASE tasks including code search, question answering, cross-file dependency retrieval, and repository-level code completion. On CodeSearchNet and RepoQA it outperforms retrieval baselines that use embeddings from strong models such as Qwen3-8B. On RepoBench, it achieves superior cross-file dependency retrieval over baselines, and on CrossCodeEval, pairing RANGER with BM25 delivers the highest exact match rate in code completion compared to other RAG methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube