Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Memory Management and Contextual Consistency for Long-Running Low-Code Agents (2509.25250v1)

Published 27 Sep 2025 in cs.AI and cs.SE

Abstract: The rise of AI-native Low-Code/No-Code (LCNC) platforms enables autonomous agents capable of executing complex, long-duration business processes. However, a fundamental challenge remains: memory management. As agents operate over extended periods, they face "memory inflation" and "contextual degradation" issues, leading to inconsistent behavior, error accumulation, and increased computational cost. This paper proposes a novel hybrid memory system designed specifically for LCNC agents. Inspired by cognitive science, our architecture combines episodic and semantic memory components with a proactive "Intelligent Decay" mechanism. This mechanism intelligently prunes or consolidates memories based on a composite score factoring in recency, relevance, and user-specified utility. A key innovation is a user-centric visualization interface, aligned with the LCNC paradigm, which allows non-technical users to manage the agent's memory directly, for instance, by visually tagging which facts should be retained or forgotten. Through simulated long-running task experiments, we demonstrate that our system significantly outperforms traditional approaches like sliding windows and basic RAG, yielding superior task completion rates, contextual consistency, and long-term token cost efficiency. Our findings establish a new framework for building reliable, transparent AI agents capable of effective long-term learning and adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: