Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning-Guided Chain-of-Draft for Token-Efficient Code Generation (2509.25243v1)

Published 26 Sep 2025 in cs.SE and cs.AI

Abstract: LLMs demonstrate surface-level fluency in code generation but struggle with structured reasoning tasks requiring correctness and semantic alignment. While Chain-of-Thought (CoT) prompting enhances reasoning through intermediate steps, it suffers from verbosity and inefficiency. Chain-of-Draft (CoD) prompting offers more concise reasoning, but the stochastic nature of LLMs produces varying solution quality, making optimal selection challenging. We propose \multicod, a reinforcement learning framework that learns to select the most promising candidate from CoD-generated solutions. Our approach uses strategy-guided prompting to encourage diverse reasoning styles and models solution selection as a contextual bandit problem. The framework optimizes interpretable features including code complexity, reasoning structure, and strategic metadata through a reward function balancing correctness, efficiency, and clarity. Experiments on MBPP, BigCodeBench, SWE-bench Verified, and Defects4J show \multicod~outperforms and in some cases, on par with standard prompting, CoT, and CoD baselines while achieving cost and token efficiency from the user's perspective through a multi-candidate design that charges only for the selected output, reducing user billing by over 50\% and improving LLM response quality, making \multicod~more sustainable and scalable for real-world deployment. Our code is available: https://anonymous.4open.science/r/MultiCoD.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.