Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-tuning of Large Language Models for Domain-Specific Cybersecurity Knowledge (2509.25241v1)

Published 25 Sep 2025 in cs.LG and cs.CR

Abstract: Recent advancements in training paradigms for LLMs have unlocked their remarkable capabilities in natural language processing and cross-domain generalization. While LLMs excel in tasks like programming and mathematical problem-solving, their zero-shot performance in specialized domains requiring expert knowledge, such as cybersecurity, is often suboptimal. This limitation arises because foundational LLMs are designed for general-purpose applications, constraining their ability to encapsulate domain-specific expertise within their parameter space. To address this, we explore fine-tuning strategies to embed cybersecurity knowledge into LLMs, enhancing their performance in cybersecurity question-answering (Q&A) tasks while prioritizing computational efficiency. Specifically, we investigate Supervised Fine-Tuning (SFT), Low-Rank Adaptation (LoRA), and Quantized Low-Rank Adaptation (QLoRA) using a cybersecurity Q&A dataset. Our results demonstrate that these fine-tuning approaches significantly outperform the foundational model in cybersecurity Q&A tasks. Moreover, LoRA and QLoRA achieve comparable performance to SFT with substantially lower computational costs, offering an efficient pathway for adapting LLMs to specialized domains. Our work highlights the potential of low-rank fine-tuning strategies to bridge the gap between general-purpose LLMs and domain-specific applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.