Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Extraction on Semi-Structured Content: Does It Remain Relevant for Question Answering in the Era of LLMs? (2509.25107v1)

Published 29 Sep 2025 in cs.CL

Abstract: The advent of LLMs has significantly advanced web-based Question Answering (QA) systems over semi-structured content, raising questions about the continued utility of knowledge extraction for question answering. This paper investigates the value of triple extraction in this new paradigm by extending an existing benchmark with knowledge extraction annotations and evaluating commercial and open-source LLMs of varying sizes. Our results show that web-scale knowledge extraction remains a challenging task for LLMs. Despite achieving high QA accuracy, LLMs can still benefit from knowledge extraction, through augmentation with extracted triples and multi-task learning. These findings provide insights into the evolving role of knowledge triple extraction in web-based QA and highlight strategies for maximizing LLM effectiveness across different model sizes and resource settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.