MARCOS: Deep Thinking by Markov Chain of Continuous Thoughts (2509.25020v1)
Abstract: The current paradigm for reasoning in LLMs involves models "thinking out loud" via a sequence of tokens, known as chain-of-thought (CoT). This approach, while effective, has several significant drawbacks. Firstly, inference requires autoregressive generation of often thousands of CoT tokens, which is slow and computationally expensive. Secondly, it constrains reasoning to the discrete space of tokens, creating an information bottleneck across reasoning steps. Thirdly, it fundamentally entangles reasoning with token generation, forcing LLMs to "think while speaking," which causes potentially short-sighted reasoning. In light of these limitations, we re-imagine reasoning in LLMs and present a new paradigm: MARCOS. In our approach, rather than autoregressively generating tokens, we model reasoning as a hidden Markov chain of continuous, high-dimensional "thoughts". Each reasoning step involves a transition of the internal thoughts, where explicit reasoning steps (which may consist of hundreds of tokens) serve as observable variables, which are windows to peek into the implicit thoughts. Since this latent process is incompatible with the standard supervised learning, we further propose a two-phase variational training scheme. Our experiments on three benchmarks demonstrate that MARCOS outperforms existing continuous reasoning methods and, for the first time, achieves performance comparable to token-based CoT, even surpassing it by 4.7% on GSM8K with up to 15.7x speedup in inference. Beyond this, MARCOS offers additional advantages, such as step-level instead of token-level control over randomness, opening significant opportunities for reinforcement learning and reasoning in LLMs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.