Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Overlap-Adaptive Regularization for Conditional Average Treatment Effect Estimation (2509.24962v1)

Published 29 Sep 2025 in cs.LG and stat.ML

Abstract: The conditional average treatment effect (CATE) is widely used in personalized medicine to inform therapeutic decisions. However, state-of-the-art methods for CATE estimation (so-called meta-learners) often perform poorly in the presence of low overlap. In this work, we introduce a new approach to tackle this issue and improve the performance of existing meta-learners in the low-overlap regions. Specifically, we introduce Overlap-Adaptive Regularization (OAR) that regularizes target models proportionally to overlap weights so that, informally, the regularization is higher in regions with low overlap. To the best of our knowledge, our OAR is the first approach to leverage overlap weights in the regularization terms of the meta-learners. Our OAR approach is flexible and works with any existing CATE meta-learner: we demonstrate how OAR can be applied to both parametric and non-parametric second-stage models. Furthermore, we propose debiased versions of our OAR that preserve the Neyman-orthogonality of existing meta-learners and thus ensure more robust inference. Through a series of (semi-)synthetic experiments, we demonstrate that our OAR significantly improves CATE estimation in low-overlap settings in comparison to constant regularization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube