Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

OAT-FM: Optimal Acceleration Transport for Improved Flow Matching (2509.24936v1)

Published 29 Sep 2025 in cs.LG

Abstract: As a powerful technique in generative modeling, Flow Matching (FM) aims to learn velocity fields from noise to data, which is often explained and implemented as solving Optimal Transport (OT) problems. In this study, we bridge FM and the recent theory of Optimal Acceleration Transport (OAT), developing an improved FM method called OAT-FM and exploring its benefits in both theory and practice. In particular, we demonstrate that the straightening objective hidden in existing OT-based FM methods is mathematically equivalent to minimizing the physical action associated with acceleration defined by OAT. Accordingly, instead of enforcing constant velocity, OAT-FM optimizes the acceleration transport in the product space of sample and velocity, whose objective corresponds to a necessary and sufficient condition of flow straightness. An efficient algorithm is designed to achieve OAT-FM with low complexity. OAT-FM motivates a new two-phase FM paradigm: Given a generative model trained by an arbitrary FM method, whose velocity information has been relatively reliable, we can fine-tune and improve it via OAT-FM. This paradigm eliminates the risk of data distribution drift and the need to generate a large number of noise data pairs, which consistently improves model performance in various generative tasks. Code is available at: https://github.com/AngxiaoYue/OAT-FM

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube