Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Attention Surgery: An Efficient Recipe to Linearize Your Video Diffusion Transformer (2509.24899v1)

Published 29 Sep 2025 in cs.CV

Abstract: Transformer-based video diffusion models (VDMs) deliver state-of-the-art video generation quality but are constrained by the quadratic cost of self-attention, making long sequences and high resolutions computationally expensive. While linear attention offers sub-quadratic complexity, prior attempts fail to match the expressiveness of softmax attention without costly retraining. We introduce \textit{Attention Surgery}, an efficient framework for \textit{linearizing} or \textit{hybridizing} attention in pretrained VDMs without training from scratch. Inspired by recent advances in LLMs, our method combines a novel hybrid attention mechanism-mixing softmax and linear tokens-with a lightweight distillation and fine-tuning pipeline requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-rate strategy to balance expressiveness and efficiency across layers. Applied to Wan2.1 1.3B, a state-of-the-art DiT-based VDM, Attention Surgery achieves the first competitive sub-quadratic attention video diffusion models, reducing attention cost by up to 40\% in terms of FLOPs, while maintaining generation quality as measured on the standard VBench and VBench-2.0 benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.