Papers
Topics
Authors
Recent
2000 character limit reached

Vehicle Classification under Extreme Imbalance: A Comparative Study of Ensemble Learning and CNNs

Published 29 Sep 2025 in cs.CV and cs.AI | (2509.24880v1)

Abstract: Accurate vehicle type recognition underpins intelligent transportation and logistics, but severe class imbalance in public datasets suppresses performance on rare categories. We curate a 16-class corpus (~47k images) by merging Kaggle, ImageNet, and web-crawled data, and create six balanced variants via SMOTE oversampling and targeted undersampling. Lightweight ensembles, such as Random Forest, AdaBoost, and a soft-voting combiner built on MobileNet-V2 features are benchmarked against a configurable ResNet-style CNN trained with strong augmentation and label smoothing. The best ensemble (SMOTE-combined) attains 74.8% test accuracy, while the CNN achieves 79.19% on the full test set and 81.25% on an unseen inference batch, confirming the advantage of deep models. Nonetheless, the most under-represented class (Barge) remains a failure mode, highlighting the limits of rebalancing alone. Results suggest prioritizing additional minority-class collection and cost-sensitive objectives (e.g., focal loss) and exploring hybrid ensemble or CNN pipelines to combine interpretability with representational power.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.