Vehicle Classification under Extreme Imbalance: A Comparative Study of Ensemble Learning and CNNs
Abstract: Accurate vehicle type recognition underpins intelligent transportation and logistics, but severe class imbalance in public datasets suppresses performance on rare categories. We curate a 16-class corpus (~47k images) by merging Kaggle, ImageNet, and web-crawled data, and create six balanced variants via SMOTE oversampling and targeted undersampling. Lightweight ensembles, such as Random Forest, AdaBoost, and a soft-voting combiner built on MobileNet-V2 features are benchmarked against a configurable ResNet-style CNN trained with strong augmentation and label smoothing. The best ensemble (SMOTE-combined) attains 74.8% test accuracy, while the CNN achieves 79.19% on the full test set and 81.25% on an unseen inference batch, confirming the advantage of deep models. Nonetheless, the most under-represented class (Barge) remains a failure mode, highlighting the limits of rebalancing alone. Results suggest prioritizing additional minority-class collection and cost-sensitive objectives (e.g., focal loss) and exploring hybrid ensemble or CNN pipelines to combine interpretability with representational power.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.