Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Greedy PDE Router for Blending Neural Operators and Classical Methods (2509.24814v1)

Published 29 Sep 2025 in stat.ME, cs.LG, and stat.ML

Abstract: When solving PDEs, classical numerical solvers are often computationally expensive, while machine learning methods can suffer from spectral bias, failing to capture high-frequency components. Designing an optimal hybrid iterative solver--where, at each iteration, a solver is selected from an ensemble of solvers to leverage their complementary strengths--poses a challenging combinatorial problem. While the greedy selection strategy is desirable for its constant-factor approximation guarantee to the optimal solution, it requires knowledge of the true error at each step, which is generally unavailable in practice. We address this by proposing an approximate greedy router that efficiently mimics a greedy approach to solver selection. Empirical results on the Poisson and Helmholtz equations demonstrate that our method outperforms single-solver baselines and existing hybrid solver approaches, such as HINTS, achieving faster and more stable convergence.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.