Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Query Circuits: Explaining How Language Models Answer User Prompts (2509.24808v1)

Published 29 Sep 2025 in cs.AI

Abstract: Explaining why a LLM produces a particular output requires local, input-level explanations. Existing methods uncover global capability circuits (e.g., indirect object identification), but not why the model answers a specific input query in a particular way. We introduce query circuits, which directly trace the information flow inside a model that maps a specific input to the output. Unlike surrogate-based approaches (e.g., sparse autoencoders), query circuits are identified within the model itself, resulting in more faithful and computationally accessible explanations. To make query circuits practical, we address two challenges. First, we introduce Normalized Deviation Faithfulness (NDF), a robust metric to evaluate how well a discovered circuit recovers the model's decision for a specific input, and is broadly applicable to circuit discovery beyond our setting. Second, we develop sampling-based methods to efficiently identify circuits that are sparse yet faithfully describe the model's behavior. Across benchmarks (IOI, arithmetic, MMLU, and ARC), we find that there exist extremely sparse query circuits within the model that can recover much of its performance on single queries. For example, a circuit covering only 1.3% of model connections can recover about 60% of performance on an MMLU questions. Overall, query circuits provide a step towards faithful, scalable explanations of how LLMs process individual inputs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 9 tweets and received 47 likes.

Upgrade to Pro to view all of the tweets about this paper: