Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Circuit-Aware Reward Training: A Mechanistic Framework for Longtail Robustness in RLHF (2509.24713v1)

Published 29 Sep 2025 in cs.LG and cs.AI

Abstract: Reinforcement Learning from Human Feedback (RLHF) reward models exhibit systematic failures on longtail distributions, leading to reward hacking and misalignment. We propose a mechanistic interpretability framework that identifies specialized neural circuits responsible for rare-event processing in reward models. Drawing from recent advances showing distributed specialization for rare tokens in LLMs\citep{liu2025no, liu2025emergent}, we hypothesize that reward models also develop functionally distinct circuits for longtail scenarios. Our theoretical framework establishes formal connections between circuit specialization, reward generalization bounds, and longtail performance. We introduce \textbf{Circuit-Aware Reward Training (CART)}, which uses circuit analysis to guide data augmentation, regularization, and ensemble strategies. This approach provides both theoretical insights into reward model failures and practical interventions for improving longtail robustness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.