Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the Self-awareness of Large Reasoning Models' Capability Boundaries (2509.24711v1)

Published 29 Sep 2025 in cs.AI and cs.CL

Abstract: Large Reasoning Models (LRMs) have shown impressive performance on complex reasoning tasks such as mathematics, yet they also display misbehaviors that expose their limitations. In particular, when faced with hard questions, LRMs often engage in unproductive reasoning until context limit, producing wrong answers while wasting substantial computation. This phenomenon reflects a fundamental issue: current answering paradigms overlook the relationship between questions and LRMs' capability boundaries. In this paper, we investigate whether LRMs possess self-awareness of capability boundaries. We begin by an observation that LRMs may know what they cannot solve through expressed reasoning confidence. For black-box models, we find that reasoning expressions reveal boundary signals, with accelerated growing confidence trajectory for solvable problems but convergent uncertainty trajectory for unsolvable ones. For white-box models, we show that hidden states of the last input token encode boundary information, with solvable and unsolvable problems linearly separable even before reasoning begins. Building on these findings, we propose two simple yet effective optimization strategies: reasoning expression monitoring and hidden states monitoring. Experiments demonstrate that these boundary-aware strategies enable LRMs to avoid unproductive reasoning without sacrificing accuracy, significantly improving reliability and efficiency by cutting token usage up to 62.7 - 93.6%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.