Papers
Topics
Authors
Recent
2000 character limit reached

Identity Bridge: Enabling Implicit Reasoning via Shared Latent Memory (2509.24653v1)

Published 29 Sep 2025 in cs.LG and cs.AI

Abstract: Despite remarkable advances, LLMs often fail at compositional reasoning tasks, a phenomenon exemplified by the ``curse of two-hop reasoning''. This paper introduces the Identity Bridge, a simple yet powerful mechanism that resolves this compositionality gap by supervising the model on a zero-hop identity task. We demonstrate empirically that this addition enables models to successfully perform out-of-distribution two-hop reasoning, a task they otherwise completely fail. To explain this phenomenon, we provide a theoretical analysis using a simplified Emb-MLP model, proving that identity supervision reshapes the model's latent geometry. We show this alignment is induced by an implicit nuclear-norm regularization during optimization, which favors low-rank solutions that share structure across tasks. For complex tasks, we use small initialization or weight decay to enhance the regularization effect, which enhances the latent space alignment effect and slows down the generalization decay. Finally, we extend our investigation to large-scale models, observing that they still achieve two-hop reasoning through the latent memory, which provides crucial inspiration for enhancing their implicit reasoning abilities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.