Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

FreeRet: MLLMs as Training-Free Retrievers (2509.24621v1)

Published 29 Sep 2025 in cs.CV

Abstract: Multimodal LLMs (MLLMs) are emerging as versatile foundations for mixed-modality retrieval. Yet, they often require heavy post-hoc training to convert them into contrastive encoders for retrieval. This work asks: Can off-the-shelf MLLMs serve as powerful retrievers without additional training? We present FreeRet, a plug-and-play framework that turns any MLLM into a two-stage retriever. FreeRet first derives semantically grounded embeddings directly from the model for fast candidate search, and then exploits its reasoning ability for precise reranking. The framework contributes three advances: bypassing lexical alignment layers to obtain semantically faithful embeddings, conditioning representation generation with explicit priors, and mitigating framing effect in reranking via neutral choice framing. On the MMEB and MMEB-V2 benchmarks spanning 46 datasets, FreeRet substantially outperforms models trained on millions of pairs. Beyond benchmarks, FreeRet is model-agnostic and scales seamlessly across MLLM families and sizes, preserves their generative abilities, supports arbitrary modality combinations, and unifies retrieval, reranking, and generation into end-to-end RAG within a single model. Our findings demonstrate that pretrained MLLMs, when carefully harnessed, can serve as strong retrieval engines without training, closing a critical gap in their role as generalists.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.