Papers
Topics
Authors
Recent
2000 character limit reached

Model-Free Dynamic Consensus in Multi-Agent Systems: A Q-Function Perspective (2509.24598v1)

Published 29 Sep 2025 in eess.SY and cs.SY

Abstract: This paper presents a new method for achieving dynamic consensus in linear discrete-time homogeneous multi-agent systems (MAS) with marginally stable or unstable dynamics. The guarantee of consensus in this setting involves a set of constraints based on the graph's spectral properties, complicating the design of the coupling gains. This challenge intensifies for large-scale systems with diverse graph Laplacian spectra. The proposed approach reformulates the dynamic consensus problem with a prescribed convergence rate using a state-action value function framework inspired by optimal control theory. Specifically, a synthetic linear quadratic regulation (LQR) formulation is introduced to encode the consensus objective, enabling its translation into a convex semidefinite programming (SDP) problem. The resulting SDP is applicable in both model-based and model-free settings for jointly designing the local feedback and coupling gains. To handle the inherent non-convex feasibility conditions, a convex-concave decomposition strategy is employed. Adaptation of the method in a completely model-free set-up eliminates the need for system identification or knowledge of the agents' dynamics. Instead, it relies on input-state data collection and offers an entirely data-driven equivalent SDP formulation. Finally, a new algorithm balancing feasibility, convergence rate, robustness, and energy efficiency, is established to provide design flexibility. Numerical simulations validate the method's effectiveness in various scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.