Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SAIP: A Plug-and-Play Scale-adaptive Module in Diffusion-based Inverse Problems (2509.24580v1)

Published 29 Sep 2025 in cs.LG and cs.CV

Abstract: Solving inverse problems with diffusion models has shown promise in tasks such as image restoration. A common approach is to formulate the problem in a Bayesian framework and sample from the posterior by combining the prior score with the likelihood score. Since the likelihood term is often intractable, estimators like DPS, DMPS, and $\pi$GDM are widely adopted. However, these methods rely on a fixed, manually tuned scale to balance prior and likelihood contributions. Such a static design is suboptimal, as the ideal balance varies across timesteps and tasks, limiting performance and generalization. To address this issue, we propose SAIP, a plug-and-play module that adaptively refines the scale at each timestep without retraining or altering the diffusion backbone. SAIP integrates seamlessly into existing samplers and consistently improves reconstruction quality across diverse image restoration tasks, including challenging scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.