Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Emergent World Representations in OpenVLA (2509.24559v1)

Published 29 Sep 2025 in cs.LG

Abstract: Vision Language Action models (VLAs) trained with policy-based reinforcement learning (RL) encode complex behaviors without explicitly modeling environmental dynamics. However, it remains unclear whether VLAs implicitly learn world models, a haLLMark of model-based RL. We propose an experimental methodology using embedding arithmetic on state representations to probe whether OpenVLA, the current state of the art in VLAs, contains latent knowledge of state transitions. Specifically, we measure the difference between embeddings of sequential environment states and test whether this transition vector is recoverable from intermediate model activations. Using linear and non linear probes trained on activations across layers, we find statistically significant predictive ability on state transitions exceeding baselines (embeddings), indicating that OpenVLA encodes an internal world model (as opposed to the probes learning the state transitions). We investigate the predictive ability of an earlier checkpoint of OpenVLA, and uncover hints that the world model emerges as training progresses. Finally, we outline a pipeline leveraging Sparse Autoencoders (SAEs) to analyze OpenVLA's world model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.