Training-Free Multimodal Guidance for Video to Audio Generation (2509.24550v1)
Abstract: Video-to-audio (V2A) generation aims to synthesize realistic and semantically aligned audio from silent videos, with potential applications in video editing, Foley sound design, and assistive multimedia. Although the excellent results, existing approaches either require costly joint training on large-scale paired datasets or rely on pairwise similarities that may fail to capture global multimodal coherence. In this work, we propose a novel training-free multimodal guidance mechanism for V2A diffusion that leverages the volume spanned by the modality embeddings to enforce unified alignment across video, audio, and text. The proposed multimodal diffusion guidance (MDG) provides a lightweight, plug-and-play control signal that can be applied on top of any pretrained audio diffusion model without retraining. Experiments on VGGSound and AudioCaps demonstrate that our MDG consistently improves perceptual quality and multimodal alignment compared to baselines, proving the effectiveness of a joint multimodal guidance for V2A.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.