Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpretable Kernel Representation Learning at Scale: A Unified Framework Utilizing Nyström Approximation (2509.24467v1)

Published 29 Sep 2025 in cs.LG and stat.ML

Abstract: Kernel methods provide a theoretically grounded framework for non-linear and non-parametric learning, with strong analytic foundations and statistical guarantees. Yet, their scalability has long been limited by prohibitive time and memory costs. While progress has been made in scaling kernel regression, no framework exists for scalable kernel-based representation learning, restricting their use in the era of foundation models where representations are learned from massive unlabeled data. We introduce KREPES -- a unified, scalable framework for kernel-based representation learning via Nystr\"om approximation. KREPES accommodates a wide range of unsupervised and self-supervised losses, and experiments on large image and tabular datasets demonstrate its efficiency. Crucially, KREPES enables principled interpretability of the learned representations, an immediate benefit over deep models, which we substantiate through dedicated analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.