Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Proxy-GS: Efficient 3D Gaussian Splatting via Proxy Mesh (2509.24421v1)

Published 29 Sep 2025 in cs.CV

Abstract: 3D Gaussian Splatting (3DGS) has emerged as an efficient approach for achieving photorealistic rendering. Recent MLP-based variants further improve visual fidelity but introduce substantial decoding overhead during rendering. To alleviate computation cost, several pruning strategies and level-of-detail (LOD) techniques have been introduced, aiming to effectively reduce the number of Gaussian primitives in large-scale scenes. However, our analysis reveals that significant redundancy still remains due to the lack of occlusion awareness. In this work, we propose Proxy-GS, a novel pipeline that exploits a proxy to introduce Gaussian occlusion awareness from any view. At the core of our approach is a fast proxy system capable of producing precise occlusion depth maps at a resolution of 1000x1000 under 1ms. This proxy serves two roles: first, it guides the culling of anchors and Gaussians to accelerate rendering speed. Second, it guides the densification towards surfaces during training, avoiding inconsistencies in occluded regions, and improving the rendering quality. In heavily occluded scenarios, such as the MatrixCity Streets dataset, Proxy-GS not only equips MLP-based Gaussian splatting with stronger rendering capability but also achieves faster rendering speed. Specifically, it achieves more than 2.5x speedup over Octree-GS, and consistently delivers substantially higher rendering quality. Code will be public upon acceptance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.