Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

From Static to Dynamic: Adaptive Monte Carlo Search for Mathematical Process Supervision (2509.24351v1)

Published 29 Sep 2025 in cs.AI

Abstract: The quality of process data plays a key role in training a Process Reward Model (PRM), which can enhance the complex mathematical reasoning capability of LLMs. Existing methods estimate the quality of reasoning steps based on a fixed-budget sampling strategy and navigate a vast search space to perform path expansion during the automated data generation process, resulting in their inefficiency and inflexibility. To address these issues, we propose Adaptive Monte Carlo Search (AMCS), a framework that transforms data generation from fixed, static to adaptive, dynamic search at the level of node value estimation and path expansion. On one hand, AMCS adaptively refines estimation by allocating more samples to uncertain reasoning steps while using fewer samples for those that are easier to estimate. On the other hand, it enhances the path expansion through a Monte Carlo algorithm with a temporally adaptive policy that begins with broad exploration and gradually shifts toward exploiting the most promising directions. With AMCS, we construct a large-scale dataset MathSearch-200K of about 200K process supervision examples for training PRMs. To verify the effectiveness of our method, we conduct extensive experiments on four mathematical reasoning benchmarks. Experimental results show that Qwen2.5-Math-7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B, outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. Moreover, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-distribution problems, demonstrating strong generalization capability. Our code is available at https://github.com/reml-group/AMCS.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.