Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Generalizable PDE Dynamics Forecasting via Physics-Guided Invariant Learning (2509.24332v1)

Published 29 Sep 2025 in cs.LG and cs.AI

Abstract: Advanced deep learning-based approaches have been actively applied to forecast the spatiotemporal physical dynamics governed by partial differential equations (PDEs), which acts as a critical procedure in tackling many science and engineering problems. As real-world physical environments like PDE system parameters are always capricious, how to generalize across unseen out-of-distribution (OOD) forecasting scenarios using limited training data is of great importance. To bridge this barrier, existing methods focus on discovering domain-generalizable representations across various PDE dynamics trajectories. However, their zero-shot OOD generalization capability remains deficient, since extra test-time samples for domain-specific adaptation are still required. This is because the fundamental physical invariance in PDE dynamical systems are yet to be investigated or integrated. To this end, we first explicitly define a two-fold PDE invariance principle, which points out that ingredient operators and their composition relationships remain invariant across different domains and PDE system evolution. Next, to capture this two-fold PDE invariance, we propose a physics-guided invariant learning method termed iMOOE, featuring an Invariance-aligned Mixture Of Operator Expert architecture and a frequency-enriched invariant learning objective. Extensive experiments across simulated benchmarks and real-world applications validate iMOOE's superior in-distribution performance and zero-shot generalization capabilities on diverse OOD forecasting scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.