Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A study of Universal ODE approaches to predicting soil organic carbon (2509.24306v1)

Published 29 Sep 2025 in cs.LG and cs.AI

Abstract: Soil Organic Carbon (SOC) is a foundation of soil health and global climate resilience, yet its prediction remains difficult because of intricate physical, chemical, and biological processes. In this study, we explore a Scientific Machine Learning (SciML) framework built on Universal Differential Equations (UDEs) to forecast SOC dynamics across soil depth and time. UDEs blend mechanistic physics, such as advection diffusion transport, with neural networks that learn nonlinear microbial production and respiration. Using synthetic datasets, we systematically evaluated six experimental cases, progressing from clean, noise free benchmarks to stress tests with high (35%) multiplicative, spatially correlated noise. Our results highlight both the potential and limitations of the approach. In noise free and moderate noise settings, the UDE accurately reconstructed SOC dynamics. In clean terminal profile at 50 years (Case 4) achieved near perfect fidelity, with MSE = 1.6e-5, and R2 = 0.9999. Case 5, with 7% noise, remained robust (MSE = 3.4e-6, R2 = 0.99998), capturing depth wise SOC trends while tolerating realistic measurement uncertainty. In contrast, Case 3 (35% noise at t = 0) showed clear evidence of overfitting: the model reproduced noisy inputs with high accuracy but lost generalization against the clean truth (R2 = 0.94). Case 6 (35% noise at t = 50) collapsed toward overly smooth mean profiles, failing to capture depth wise variability and yielding negative R2, underscoring the limits of standard training under severe uncertainty. These findings suggest that UDEs are well suited for scalable, noise tolerant SOC forecasting, though advancing toward field deployment will require noise aware loss functions, probabilistic modelling, and tighter integration of microbial dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube