Let LLMs Speak Embedding Languages: Generative Text Embeddings via Iterative Contrastive Refinement (2509.24291v1)
Abstract: Existing LLM-based embeddings typically adopt an encoder-only paradigm, treating LLMs as static feature extractors and overlooking their core generative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive Sentence Embeddings), a novel framework that leverages autoregressive generation to iteratively refine semantic representations. By producing sequences of soft tokens optimized under contrastive objective, GIRCSE captures latent concepts and implicit semantics that encoder-only methods often miss. To guide this process, we propose an Iterative Contrastive Refinement (ICR) objective that encourages each refinement step to yield better representations. Extensive experiments show that GIRCSE outperforms strong LLM-based embedding baselines on the MTEB benchmark and instruction-following tasks. Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more tokens at inference steadily improves embedding quality. Our results establish generative iterative refinement as a new paradigm for representation learning.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.