Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimally revealing bits for rejection sampling (2509.24290v1)

Published 29 Sep 2025 in cs.DS, cs.DM, cs.IT, math.IT, and math.PR

Abstract: Rejection sampling is a popular method used to generate numbers that follow some given distribution. We study the use of this method to generate random numbers in the unit interval from increasing probability density functions. We focus on the problem of sampling from $n$ correlated random variables from a joint distribution whose marginal distributions are all increasing. We show that, in the worst case, the expected number of random bits required to accept or reject a sample grows at least linearly and at most quadratically with $n$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.