Cycle Diffusion Model for Counterfactual Image Generation (2509.24267v1)
Abstract: Deep generative models have demonstrated remarkable success in medical image synthesis. However, ensuring conditioning faithfulness and high-quality synthetic images for direct or counterfactual generation remains a challenge. In this work, we introduce a cycle training framework to fine-tune diffusion models for improved conditioning adherence and enhanced synthetic image realism. Our approach, Cycle Diffusion Model (CDM), enforces consistency between generated and original images by incorporating cycle constraints, enabling more reliable direct and counterfactual generation. Experiments on a combined 3D brain MRI dataset (from ABCD, HCP aging & young adults, ADNI, and PPMI) show that our method improves conditioning accuracy and enhances image quality as measured by FID and SSIM. The results suggest that the cycle strategy used in CDM can be an effective method for refining diffusion-based medical image generation, with applications in data augmentation, counterfactual, and disease progression modeling.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.