Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Risk-Sensitive RL for Alleviating Exploration Dilemmas in Large Language Models (2509.24261v1)

Published 29 Sep 2025 in cs.AI and cs.LG

Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing LLMs on complex reasoning tasks. However, existing methods suffer from an exploration dilemma: the sharply peaked initial policies of pre-trained LLMs confine standard RL algorithms to a narrow set of solutions, boosting single-solution accuracy (pass@1) but suppressing solution diversity and multi-solution performance (pass@k). As a result, RLVR often distills existing capabilities rather than discovering new reasoning strategies. To overcome this, we introduce a Risk-Sensitive Reinforcement Learning framework. Our approach employs a risk-seeking objective that interpolates between mean and maximum rewards, leading to a novel algorithm, Risk-Sensitive GRPO (RS-GRPO), which drives deeper exploration by amplifying learning from challenging prompts. Remarkably, RS-GRPO is simple to implement, requiring only minor code modifications. On six mathematical reasoning benchmarks and with five different LLMs, RS-GRPO consistently improves pass@k performance while maintaining or enhancing pass@1 accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.