Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accessible, Realistic, and Fair Evaluation of Positive-Unlabeled Learning Algorithms (2509.24228v1)

Published 29 Sep 2025 in cs.LG

Abstract: Positive-unlabeled (PU) learning is a weakly supervised binary classification problem, in which the goal is to learn a binary classifier from only positive and unlabeled data, without access to negative data. In recent years, many PU learning algorithms have been developed to improve model performance. However, experimental settings are highly inconsistent, making it difficult to identify which algorithm performs better. In this paper, we propose the first PU learning benchmark to systematically compare PU learning algorithms. During our implementation, we identify subtle yet critical factors that affect the realistic and fair evaluation of PU learning algorithms. On the one hand, many PU learning algorithms rely on a validation set that includes negative data for model selection. This is unrealistic in traditional PU learning settings, where no negative data are available. To handle this problem, we systematically investigate model selection criteria for PU learning. On the other hand, the problem settings and solutions of PU learning have different families, i.e., the one-sample and two-sample settings. However, existing evaluation protocols are heavily biased towards the one-sample setting and neglect the significant difference between them. We identify the internal label shift problem of unlabeled training data for the one-sample setting and propose a simple yet effective calibration approach to ensure fair comparisons within and across families. We hope our framework will provide an accessible, realistic, and fair environment for evaluating PU learning algorithms in the future.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.