Forge4D: Feed-Forward 4D Human Reconstruction and Interpolation from Uncalibrated Sparse-view Videos (2509.24209v1)
Abstract: Instant reconstruction of dynamic 3D humans from uncalibrated sparse-view videos is critical for numerous downstream applications. Existing methods, however, are either limited by the slow reconstruction speeds or incapable of generating novel-time representations. To address these challenges, we propose Forge4D, a feed-forward 4D human reconstruction and interpolation model that efficiently reconstructs temporally aligned representations from uncalibrated sparse-view videos, enabling both novel view and novel time synthesis. Our model simplifies the 4D reconstruction and interpolation problem as a joint task of streaming 3D Gaussian reconstruction and dense motion prediction. For the task of streaming 3D Gaussian reconstruction, we first reconstruct static 3D Gaussians from uncalibrated sparse-view images and then introduce learnable state tokens to enforce temporal consistency in a memory-friendly manner by interactively updating shared information across different timestamps. For novel time synthesis, we design a novel motion prediction module to predict dense motions for each 3D Gaussian between two adjacent frames, coupled with an occlusion-aware Gaussian fusion process to interpolate 3D Gaussians at arbitrary timestamps. To overcome the lack of the ground truth for dense motion supervision, we formulate dense motion prediction as a dense point matching task and introduce a self-supervised retargeting loss to optimize this module. An additional occlusion-aware optical flow loss is introduced to ensure motion consistency with plausible human movement, providing stronger regularization. Extensive experiments demonstrate the effectiveness of our model on both in-domain and out-of-domain datasets. Project page and code at: https://zhenliuzju.github.io/huyingdong/Forge4D.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.