Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Your thoughts tell who you are: Characterize the reasoning patterns of LRMs (2509.24147v1)

Published 29 Sep 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Current comparisons of large reasoning models (LRMs) focus on macro-level statistics such as task accuracy or reasoning length. Whether different LRMs reason differently remains an open question. To address this gap, we introduce the LLM-proposed Open Taxonomy (LOT), a classification method that uses a generative LLM to compare reasoning traces from two LRMs and articulate their distinctive features in words. LOT then models how these features predict the source LRM of a reasoning trace based on their empirical distributions across LRM outputs. Iterating this process over a dataset of reasoning traces yields a human-readable taxonomy that characterizes how models think. We apply LOT to compare the reasoning of 12 open-source LRMs on tasks in math, science, and coding. LOT identifies systematic differences in their thoughts, achieving 80-100% accuracy in distinguishing reasoning traces from LRMs that differ in scale, base model family, or objective domain. Beyond classification, LOT's natural-language taxonomy provides qualitative explanations of how LRMs think differently. Finally, in a case study, we link the reasoning differences to performance: aligning the reasoning style of smaller Qwen3 models with that of the largest Qwen3 during test time improves their accuracy on GPQA by 3.3-5.7%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.