Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Transparent, Evaluable, and Accessible Data Agents: A Proof-of-Concept Framework (2509.24127v1)

Published 28 Sep 2025 in cs.AI and cs.DB

Abstract: This article presents a modular, component-based architecture for developing and evaluating AI agents that bridge the gap between natural language interfaces and complex enterprise data warehouses. The system directly addresses core challenges in data accessibility by enabling non-technical users to interact with complex data warehouses through a conversational interface, translating ambiguous user intent into precise, executable database queries to overcome semantic gaps. A cornerstone of the design is its commitment to transparent decision-making, achieved through a multi-layered reasoning framework that explains the "why" behind every decision, allowing for full interpretability by tracing conclusions through specific, activated business rules and data points. The architecture integrates a robust quality assurance mechanism via an automated evaluation framework that serves multiple functions: it enables performance benchmarking by objectively measuring agent performance against golden standards, and it ensures system reliability by automating the detection of performance regressions during updates. The agent's analytical depth is enhanced by a statistical context module, which quantifies deviations from normative behavior, ensuring all conclusions are supported by quantitative evidence including concrete data, percentages, and statistical comparisons. We demonstrate the efficacy of this integrated agent-development-with-evaluation framework through a case study on an insurance claims processing system. The agent, built on a modular architecture, leverages the BigQuery ecosystem to perform secure data retrieval, apply domain-specific business rules, and generate human-auditable justifications. The results confirm that this approach creates a robust, evaluable, and trustworthy system for deploying LLM-powered agents in data-sensitive, high-stakes domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.