Dual-Scale World Models for LLM Agents Towards Hard-Exploration Problems (2509.24116v2)
Abstract: LLM-based agents have seen promising advances, yet they are still limited in "hard-exploration" tasks requiring learning new knowledge through exploration. We present GLoW, a novel approach leveraging dual-scale world models, maintaining a trajectory frontier of high-value discoveries at the global scale, while learning from local trial-and-error in exploration through a Multi-path Advantage Reflection mechanism which infers advantage-based progress signals to guide exploration. To evaluate our framework for hard-exploration, we tackle the Jericho benchmark suite of text-based games, where GLoW achieves a new state-of-theart performance for LLM-based approaches. Compared to state-of-the-art RLbased methods, our approach achieves comparable performance while requiring 100-800x fewer environment interactions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.