Pragmatic Inference for Moral Reasoning Acquisition: Generalization via Distributional Semantics (2509.24102v1)
Abstract: Moral reasoning has emerged as a promising research direction for LLMs, yet achieving generalization remains a central challenge. From a linguistic standpoint, this difficulty arises because LLMs are adept at capturing distributional semantics, which fundamentally differs from the morals which operate at the pragmatic level. This paper investigates how LLMs can achieve generalized moral reasoning despite their reliance on distributional semantics. We propose pragmatic inference methods grounded in moral foundations theory, which leverage contextual information at each step to bridge the pragmatic gap and guide LLMs in connecting moral foundations with moral reasoning objectives. Experimental results demonstrate that our approach significantly enhances LLMs' generalization in moral reasoning, providing a foundation for future research grounded in moral foundations theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.