Papers
Topics
Authors
Recent
2000 character limit reached

BTC-SAM: Leveraging LLMs for Generation of Bias Test Cases for Sentiment Analysis Models (2509.24101v1)

Published 28 Sep 2025 in cs.CL

Abstract: Sentiment Analysis (SA) models harbor inherent social biases that can be harmful in real-world applications. These biases are identified by examining the output of SA models for sentences that only vary in the identity groups of the subjects. Constructing natural, linguistically rich, relevant, and diverse sets of sentences that provide sufficient coverage over the domain is expensive, especially when addressing a wide range of biases: it requires domain experts and/or crowd-sourcing. In this paper, we present a novel bias testing framework, BTC-SAM, which generates high-quality test cases for bias testing in SA models with minimal specification using LLMs for the controllable generation of test sentences. Our experiments show that relying on LLMs can provide high linguistic variation and diversity in the test sentences, thereby offering better test coverage compared to base prompting methods even for previously unseen biases.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.