Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

ResFormer: All-Time Reservoir Memory for Long Sequence Classification (2509.24074v1)

Published 28 Sep 2025 in cs.CL

Abstract: Sequence classification is essential in NLP for understanding and categorizing language patterns in tasks like sentiment analysis, intent detection, and topic classification. Transformer-based models, despite achieving state-of-the-art performance, have inherent limitations due to quadratic time and memory complexity, restricting their input length. Although extensive efforts have aimed at reducing computational demands, processing extensive contexts remains challenging. To overcome these limitations, we propose ResFormer, a novel neural network architecture designed to model varying context lengths efficiently through a cascaded methodology. ResFormer integrates an reservoir computing network featuring a nonlinear readout to effectively capture long-term contextual dependencies in linear time. Concurrently, short-term dependencies within sentences are modeled using a conventional Transformer architecture with fixed-length inputs. Experiments demonstrate that ResFormer significantly outperforms baseline models of DeepSeek-Qwen and ModernBERT, delivering an accuracy improvement of up to +22.3% on the EmoryNLP dataset and consistent gains on MultiWOZ, MELD, and IEMOCAP. In addition, ResFormer exhibits reduced memory consumption, underscoring its effectiveness and efficiency in modeling extensive contextual information.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube