Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

From Quasiperiodicity to a Complete Coloring of the Kohmoto Butterfly (2509.24025v1)

Published 28 Sep 2025 in math-ph and math.MP

Abstract: The spectra of the Kohmoto model give rise to a fractal phase diagram, known as the Kohmoto butterfly. The butterfly encapsulates the spectra of all periodic Kohmoto Hamiltonians, whose index invariants are sought after. Topological methods - such as Chern numbers - are ill defined due to the discontinuous potential, and hence fail to provide index invariants. This Letter overcomes that obstacle and provides a complete classification of the Kohmoto model indices. Our approach encodes the Kohmoto butterfly as a spectral tree graph, reflecting the quasiperiodic nature via the periodic spectra. This yields a complete coloring of the phase diagram and a new perspective on other spectral butterflies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.