Equation-Free Coarse Control of Distributed Parameter Systems via Local Neural Operators
Abstract: The control of high-dimensional distributed parameter systems (DPS) remains a challenge when explicit coarse-grained equations are unavailable. Classical equation-free (EF) approaches rely on fine-scale simulators treated as black-box timesteppers. However, repeated simulations for steady-state computation, linearization, and control design are often computationally prohibitive, or the microscopic timestepper may not even be available, leaving us with data as the only resource. We propose a data-driven alternative that uses local neural operators, trained on spatiotemporal microscopic/mesoscopic data, to obtain efficient short-time solution operators. These surrogates are employed within Krylov subspace methods to compute coarse steady and unsteady-states, while also providing Jacobian information in a matrix-free manner. Krylov-Arnoldi iterations then approximate the dominant eigenspectrum, yielding reduced models that capture the open-loop slow dynamics without explicit Jacobian assembly. Both discrete-time Linear Quadratic Regulator (dLQR) and pole-placement (PP) controllers are based on this reduced system and lifted back to the full nonlinear dynamics, thereby closing the feedback loop.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.