Papers
Topics
Authors
Recent
2000 character limit reached

Equation-Free Coarse Control of Distributed Parameter Systems via Local Neural Operators

Published 28 Sep 2025 in eess.SY, cs.LG, cs.NA, cs.SY, math.NA, and math.OC | (2509.23975v1)

Abstract: The control of high-dimensional distributed parameter systems (DPS) remains a challenge when explicit coarse-grained equations are unavailable. Classical equation-free (EF) approaches rely on fine-scale simulators treated as black-box timesteppers. However, repeated simulations for steady-state computation, linearization, and control design are often computationally prohibitive, or the microscopic timestepper may not even be available, leaving us with data as the only resource. We propose a data-driven alternative that uses local neural operators, trained on spatiotemporal microscopic/mesoscopic data, to obtain efficient short-time solution operators. These surrogates are employed within Krylov subspace methods to compute coarse steady and unsteady-states, while also providing Jacobian information in a matrix-free manner. Krylov-Arnoldi iterations then approximate the dominant eigenspectrum, yielding reduced models that capture the open-loop slow dynamics without explicit Jacobian assembly. Both discrete-time Linear Quadratic Regulator (dLQR) and pole-placement (PP) controllers are based on this reduced system and lifted back to the full nonlinear dynamics, thereby closing the feedback loop.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.