A Computational Perspective on NeuroAI and Synthetic Biological Intelligence (2509.23896v1)
Abstract: NeuroAI is an emerging field at the intersection of neuroscience and artificial intelligence, where insights from brain function guide the design of intelligent systems. A central area within this field is synthetic biological intelligence (SBI), which combines the adaptive learning properties of biological neural networks with engineered hardware and software. SBI systems provide a platform for modeling neural computation, developing biohybrid architectures, and enabling new forms of embodied intelligence. In this review, we organize the NeuroAI landscape into three interacting domains: hardware, software, and wetware. We outline computational frameworks that integrate biological and non-biological systems and highlight recent advances in organoid intelligence, neuromorphic computing, and neuro-symbolic learning. These developments collectively point toward a new class of systems that compute through interactions between living neural tissue and digital algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.